publications

55. Photochemical 1,3-Boronate Rearrangement Enables Three-Component N-Alkylation for α-Tertiary Hydroxybenzylamine Synthesis.  PDF

Zou, P.1; Fu, D.1; Wang, H.1; Sun, R.; Lan, Y.*; Chen, Y.* Nat. Commun. 2024, 15, 10234. Highlighted by Chinese Academy of Sciences, and X-MOL.

 

54. Photocatalytic Aldehyde Allylation for Site-Specific DNA Functionalization.  PDF

Zhang, Y.1; Huang, Y.1; Che, Q.1; Chen, Y.* Chin. J. Chem. 2025, 43, 97−103. Highlighted by Chin. J. Chem, CBG.

 

 

53. Chemoselective Synthesis of α-Tertiary Hydroxy Oximes via Photochemical 1,3-Boronate Rearrangement.  PDF

Cai, R.; Zou, P.; Zhang, Y.; Chen, Y.* Org. Lett. 2024, 26, 7795−7799. 

 

52. Radical 6-Endo Addition Enables Pyridine Synthesis under Metal-Free Conditions.  PDF

Dong, X.1; Shao, Y.1; Liu, Z.; Huang, X.;  Xue, X.*; Chen, Y.* Angew. Chem., Int. Ed. 2024, 63, e202410297. Highlighted by Synfacts, Chinese Academy of Sciences, Wiley Chem China, and X-MOL.

 

51. Photocatalytic Oxyalkynylation of Unactivated Alkenes Enabled by Hypervalent Iodine (III) Reagents. PDF

Qin, H.1; Liu, Z.1; Zhang, Y.1; Chen, Y.* ACS Catal. 2024, 14, 13202−13208. Featured as the Front Cover of the September Issue in 2024, ACS Catal. Highlighted by ACS China, CBG.

 

50. Site-Specific DNA Post-Synthetic Modification via Fast Photocatalytic Allylation.  PDF

Huang, Y.1; Zhang, Y.1; Hu, C.; Chen, Y.* Org. Chem. Front. 2024, 11, 4408-4415. Highlighted by Org. Chem. Front.

 

49. Genetically Encoded Photocatalysis Enables Spatially Restricted Optochemical Modulation of Neurons in Live Mice.  PDF

Zeng, K.1; Jiao, Z.1; Jiang, Q.; He, R.; Zhang, Y.; Li, W.*; Xu, T.*; Chen, Y.* ACS Cent. Sci. 2024, 10, 1, 163–175. Featured as the Front Cover of the January Issue in 2024, ACS Cent. Sci. Highlighted by ACS China, X-MOL.

 

48. Metal-Free 1,3-Boronate Rearrangement to Ketones Driven by Visible Light.  PDF

Hao, K.1; Li, D.1; Fu, D.; Zou, P.; Xie, S.; Lan, Y.*; Chen, Y.*  Angew. Chem., Int. Ed. 2024, 63, e202316481.Highlighted by Chinese Academy of Sciences, X-MOL, CBG.

 

47. 2-(Chloromethoxy)-1H-isoindole-1,3(2H)-dione.  PDF

Liu, D.; Chen, Y.* e-EROS Encyclopedia of Reagents for Organic Synthesis; Paquette, L. A., Ed.; John Wiley & Sons, 2024.

 

46. Photo-Modulation of Gene-Editing Enzymes CRISPR/Cas9 with Bifunctional Small-Molecule Ligands.  PDF

Zhang, Y.1; Zhang, Y.1; Han, L.1; Che, Q.; Tan, J.; Zou, P.; Chen, Y.* Chin. J. Chem. 2023, 41, 3639−3644. Highlighted by Chin. J. Chem. Dedicated to the memory of Professor Xiyan Lu.

 

45. Selective C–H Acyloxylation of Sulfides/Disulfides Enabled by Hypervalent Iodine Reagents.  PDF

Wu, S.; Chen, Y.* Adv. Syn. Catal. 2023, 365, 2690−2696. Very Important Publication. Invited Special Thematic Issue: Iodine in Catalysis and Organic Synthesis.

 

44. Distal Amidoketone Synthesis Enabled by Dimethyl Benziodoxoles via Dual Copper/Photoredox Catalysis.  PDF

Ge, Y.; Shao, Y.; Wu, S.; Liu, P.; Li, J.; Qin, H.; Zhang, Y.; Xue, X.*; Chen, Y.* ACS Catal. 2023, 13, 3749−3756. Highlighted by Org. Chem. Highlights, CBG.

 

43. Visible-Light-Induced Proteins Labeling in Live Cells with Aryl Azides.  PDF

Zhang, Y.1; Tan, J.1; Chen, Y.* Chem. Commun. 2023, 59, 2413−2420. Invited Feature Article in Themed Collection “2023 Pioneering Investigators” and “Photofunctional Materials and Transformations”.

 

42. Formyl Radical Generation from α-Chloro N-Methoxyphthalimides Enables Selective Aldehyde Synthesis.  PDF

Liu, D.1; Yang, K.1; Fang, D.1; Li, S.; Lan, Y.*; Chen, Y.* Angew. Chem., Int. Ed. 2023, 62, e202213686. Highlighted by Chinese Academy of Sciences, X-MOL, CBG.

 

41. Hypervalent Iodine Reagents Enable C(sp2)–H Amidation of (Hetero)arenes with Iminophenylacetic Acids.  PDF

Pan, Y.1; Liu, Z.1; Zou, P.; Chen, Y.; Chen, Y.* Org. Lett. 2022, 24, 6681−6685. Highlighted by CBG

 

40. Hypervalent Iodine Reagents Enable C−H Alkynylation with Iminophenylacetic Acids via Alkoxyl Radicals.  PDF

Liu, Z.1; Pan, Y.1; Zou, P.; Huang, H.; Chen, Y.; Chen, Y.* Org. Lett. 2022, 24, 5951−5956. 

 

39. Endogenous Proteins Modulation in Live Cells with Small Molecules and Light.  PDF

Zeng, K.; Han, L.; Chen, Y.* Chembiochem 2022, 23, e202200244.  Invited Concept.

 

38. Radical C(sp3)-H Heck-type Reaction of N-Alkoxybenzimidoyl Chlorides with Styrenes to Construct Alkenols.  PDF

Fang, D.; Zhang, Y.; Chen, Y.* Org. Lett. 2022, 24, 2050−2054.

 

37. Ligand-Directed Caging Enables the Control of Endogenous DNA Alkyltransferase Activity with Light inside Live Cells.  PDF

Zhang, Y.1; Han, L.1; Tian, X.; Peng, C.; Chen, Y.* Angew. Chem., Int. Ed. 2022, 61, e202115472. Featured as the Inside Cover of the Issue 17 in 2022, Angew. Chem., Int. Ed. Highlighted by Wiley Chem, Chinese Academy of Sciences, X-MOL, CBG.

 

36. Terminal Trifluoromethylation of Ketones via Selective C-C Cleavage of Cycloalkanols Enabled by Hypervalent Iodine Reagents.  PDF

Wu, S.; Li, J.; He, R.; Jia, K.; Chen, Y.* Org. Lett. 2021, 23, 9204−9209. Highlighted by Organic Chemistry Portal.

 

35. Oxygen-Centered Radicals.  PDF

Zhang, J.; Liu, D.; Chen, Y.*  Science of Synthesis: Free Radicals: Fundamentals and Applications in Organic Synthesis. Fensterbank, L.; Ollivier, D., Ed.; Thieme: Stuttgart, 2021.Vol. 1, 323−380.

 

34. Selective C(sp3)-C(sp3) Cleavage/Alkynylation of Cycloalkylamides Enables Aminoalkyne Synthesis with Hypervalent Iodine Reagents.  PDF

Liu, Z.; Wu, S.; Chen, Y.* ACS Catal. 2021, 11, 10565−10573.

 

33. Selective Mitochondrial Protein Labeling Enabled by Biocompatible Photocatalytic Reactions inside Live Cells.  PDF

Wang, H.1; Zhang, Y.1; Zeng, K.1; Qiang, J.1; Cao, Y.; Li, Y.; Fang, Y.; Zhang, Y.*; Chen, Y.* JACS Au. 2021, 1, 1066−1075. Featured as the Supplementary Cover of the July Issue in 2021, JACS Au. Highlighted by NSFC, Chinese Academy of Sciences.

 

32. Investigations on 1,2-Hydrogen Atom Transfer Reactivity of Alkoxyl Radicals under Visible-Light-Induced Reaction Conditions.  PDF

Liu, D.; Zhang, J.; Chen, Y.* Synlett. 2021, 32, 356−361. Invited Account. Special Cluster for Radicals – by Young Chinese Organic Chemists.

 

31. Illuminating Biology with Visible-Light-Induced Biocompatible Reactions.  PDF

Chen, Y.* Chemphotochem. 2020, 4, 319−320. Meet the board.

 

30. Visible-Light-Induced Alkoxyl Radicals Enable α-C(sp3)-H Bond Allylation.  PDF

Zhang, J.1; Liu, D.1.; Liu, S.; Ge, Y.; Lan, Y.*; Chen, Y.* iScience. 2020, 23, 100755.

 

29. DNA-Encoded Library Chemistry: Amplification of Chemical Reaction Diversity for the Exploration of Chemical Space.  PDF

Huang, Y.; Savych, O.; Moroz, Y.; Chen, Y.*; Goodnow, R. A.* Aldrichimica Acta. 2019, 52, 75−87. Invited Review.

 

28. Intermolecular Radical Addition to Ketoacids Enabled by Boron Activation.  PDF

Xie, S.; Li, D.; Huang, H.; Zhang, F.; Chen, Y.* J. Am. Chem. Soc. 2019, 141, 1623716242. Highlighted by Chinese Academy of Sciences, CBG.

 

27. Acyl Radical Smiles Rearrangement to Construct Hydroxybenzophenones by Photoredox Catalysis.  PDF

Li, J.; Liu, Z.; Wu, S.; Chen, Y.* Org. Lett. 2019, 21, 20772088.

 

26. Photocatalysis Enables Visible-Light Uncaging of Bioactive Molecules in Live Cells.  PDF

Wang, H; Li, W.; Zeng, K.; Wu, Y.; Zhang, Y.; Xu, T.*; Chen, Y.Angew. Chem., Int. Ed. 2019, 58, 561−565. Highlighted by NSFC, Wiley China, and Chinese Academy of Sciences, X-MOL, CBG.

 

25. Visible Light-Driven Organic Photochemical Synthesis in China.  PDF

Chen, Y.*; Lu, L. Q.*; Yu, D. G.*; Zhu, C. J.*; Xiao, W. J.Sci. China Chem. 2019, 62, 24–57. Invited Review.

 

24. Cyclic Iodine Reagents Enable Allylic Alcohols for Alkyl Boronate Addition/Rearrangement by Photoredox Catalysis.  PDF

Liu, M; Huang, H.; Chen, Y.*  Chin. J. Chem. 2018, 36, 1209−1212. Special Issue for Prof. Xiyan Lu’s 90th Birthday.

 

23. Photochemistry of Hypervalent Iodine Compounds.  PDF

Jia, K.; Chen, Y.*  Patai’s Chemistry of Functional Groups. Marek, I, Olofsson, B., Rappoport, Z., Ed.; John Wiley & Sons, 2018.

 

22. Metal-Free C(sp3)-H Allylation via Aryl Carboxyl Radicals Enabled by Donor-Acceptor Complex.  PDF

Li, Y.1; Zhang, J.1; Li, D.; Chen, Y.*  Org. Lett. 2018, 20, 3296−3299.

 

21. Visible-Light-Induced Alkoxyl Radical Generation for Inert Chemical Bond Cleavage/Functionalizations.  PDF

Jia, K.; Chen, Y.*  Chem. Commun. 2018, 54, 61056112.  Invited Feature Article.

 

20. Investigations of Alkynyl Benziodoxole Derivatives for Radical Alkynylations in Photoredox Catalysis.  PDF

Pan, Y.; Jia, K.; Chen, Y.*; Chen, Y.*  Beilstein J. Org. Chem. 2018, 14, 12151221.  Invited Thematic Series “Hypervalent Iodine Chemistry in Organic Synthesis”.

 

19. Selective P-C(sp3) Bond Cleavage and Radical Alkynylation of α-Phosphorus Alcohols by Photoredox Catalysis.  PDF

Jia, K.; Li, J.; Chen, Y.*  Chem. Eur. J. 2018, 24, 3174–3177.

 

18. Donor-Acceptor Complex Enables Alkoxyl Radical Generation for Metal-Free C(sp3)-C(sp3) Cleavage and Allylation/Alkenylation.  PDF

Zhang, J.; Li, Y.; Xu, R.; Chen, Y.*  Angew. Chem., Int. Ed. 2017, 56, 12619 –12623. Highlighted by Science Foundation in China, China Science Daily, Chin. J. Org. Chem. and Chinese Academy of Sciences.

 

17. Selective Carbonyl-C(sp3) Bond Cleavage to Construct Ynamides, Ynoates, and Ynones by Photoredox Catalysis.  PDF

Jia, K.; Pan, Y.; Chen, Y.*  Angew. Chem., Int. Ed. 2017, 56, 2478–2481. Highlighted by Chin. J. Org. Chem., Chinese Academy of Sciences, CBG.

 

16. Visible-Light-Induced Carboxyl and Alkoxyl Radical Generations and Reactions.  PDF

Zhang, J.; Chen, Y.*  Acta Chim. Sin. 2017, 75, 4148. Invited Review on “Organic Photochemistry” Special Issue.

 

15. Polarity-Reversed Allylations of Aldehydes, Ketones, and Imines Enabled by Hantzsch Ester in Photoredox Catalysis.  PDF

Qi, L.; Chen, Y.*  Angew. Chem., Int. Ed. 2016, 55, 1331213315.

 

14. Radical Decarboxylative Functionalizations Enabled by Dual Photoredox Catalysis.  PDF

Huang, H.1; Jia, K.1; Chen, Y.*  ACS Catal. 2016, 6, 4983−4988. Invited Perspective.

 

13. Visible-Light-Induced Alkoxyl Radical Generation Enables Selective C(sp3)-C(sp3) Bond Cleavage and Functionalizations.  PDF

Jia, K.; Zhang, F.; Huang, H.; Chen, Y.* J. Am. Chem. Soc. 2016, 138, 15141517. Highlighted by Organic Chemistry Portal and Chinese Academy of Sciences.

 

12. Generation  of Alkoxyl Radicals by Photoredox Catalysis Enables Selective C(sp3)-H Functionalization under Mild Reaction Conditions.  PDF

Zhang, J.; Li, Y.; Zhang, F.; Hu, C.; Chen, Y.* Angew. Chem., Int. Ed. 2016, 55, 18721875. Highlighted by Angew. Chem., Int. Ed.

 

11. Chemoselective and Fast Decarboxylative Allylation by Photoredox Catalysis under Mild Conditions.  PDF

Hu, C.; Chen, Y.* Org. Chem. Front. 2015, 2, 13521355.

 

10. Dual Hypervalent Iodine(III) Reagents and Photoredox Catalysis Enable Decarboxylative Ynonylation under Mild Conditions.  PDF

Huang, H.1; Zhang, G.1; Chen, Y.* Angew. Chem., Int. Ed. 2015, 54, 78727876. Highlighted by Chin. J. Org. Chem. and Chinese Academy of Sciences.

 

9. Biomolecule-Compatible Chemical Bond-Formation and Bond-Cleavage Reactions Induced by Visible Light.  PDF

Hu, C.; Chen, Y.* Tetrahedron Lett. 2015, 56, 884888. Invited Digest.

 

8. Hypervalent Iodine Reagents Enable Chemoselective Deboronative/Decarboxylative Alkenylation by Photoredox Catalysis.  PDF

Huang, H.; Jia, K.; Chen, Y.* Angew. Chem., Int. Ed. 2015, 54, 18811884. Highlighted by Synfacts.

 

7. Visible-Light-Induced Chemoselective Reductive Decarboxylative Alkynylation under Biomolecule-Compatible Conditions.  PDF

Yang, J.; Zhang, J.; Qi, L.; Hu, C.; Chen, Y.* Chem. Commun. 2015, 51, 52755278. Invited Themed Collection “2015 Emerging Investigators”

 

6. Visible-Light-Induced Chemoselective Deboronative Alkynylation under Biomolecule-Compatible Conditions.  PDF

Huang, H.; Zhang, G.; Gong, L.; Zhang, S.; Chen, Y.* J. Am. Chem. Soc. 2014, 136, 2280−2283. Highlighted by Chin. J. Org. Chem., Organic Chemistry Portal, and Synfacts.

 

 

5. Discovery and Biological Characterization of Geranylated RNA in Bacteria.  PDF

Dumelin, C.E.; Chen, Y.; Leconte, A.M.; Chen, Y.G.; Liu, D.R.* Nature Chem. Bio. 2012, 8, 913919.

 

4. A Biomolecule-Compatible Visible-Light-Induced Azide Reduction from a DNA-Encoded Reaction-Discovery System.  PDF

Chen, Y.; Kamlet, A. S.; Steinman, J. B.; Liu, D. R.* Nature Chem. 2011, 3, 146153.

 

3. Ruthenium-Catalyzed Three-Component Coupling via Hydrative Conjugate Addition of Alkynes to Alkenes: One-Pot Synthesis of 1,4-Dicarbonyl Compounds.  PDF

Chen, Y.; Park, S. H.; Lee, C. W.; Lee, C.*  Chem. Asian J. 2011, 6, 20002004.

 

2. Tris(acetylacetonato)iron(III).  PDF

Chen, Y.; Lee, C.* e-EROS Encyclopedia of Reagents for Organic Synthesis; Paquette, L. A., Ed.; John Wiley & Sons, 2007.

 

1. Ruthenium-Catalyzed Hydrative Cyclization of 1,5-Enynes. PDF

Chen, Y.; Ho, D. M.; Lee, C.*  J. Am. Chem. Soc. 2005, 127, 1218412185.

Text Box: Chen group 
陈以昀课题组
Text Box: State Key Laboratory of Bioorganic and Natural Products Chemistry
Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences
中国科学院上海有机化学研究所生命有机化学国家重点实验室